skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Baeckens, Simon"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Hybridization is among the evolutionary mechanisms most frequently hypothesized to drive the success of invasive species, in part because hybrids are common in invasive populations. One explanation for this pattern is that biological invasions coincide with a change in selection pressures that limit hybridization in the native range. To investigate this possibility, we studied the introduction of the brown anole (Anolis sagrei) in the southeastern United States. We find that native populations are highly genetically structured. In contrast, all invasive populations show evidence of hybridization among native-range lineages. Temporal sampling in the invasive range spanning 15 y showed that invasive genetic structure has stabilized, indicating that large-scale contemporary gene flow is limited among invasive populations and that hybrid ancestry is maintained. Additionally, our results are consistent with hybrid persistence in invasive populations resulting from changes in natural selection that occurred during invasion. Specifically, we identify a large-effect X chromosome locus associated with variation in limb length, a well-known adaptive trait in anoles, and show that this locus is often under selection in the native range, but rarely so in the invasive range. Moreover, we find that the effect size of alleles at this locus on limb length is much reduced in hybrids among divergent lineages, consistent with epistatic interactions. Thus, in the native range, epistasis manifested in hybrids can strengthen extrinsic postmating isolation. Together, our findings show how a change in natural selection can contribute to an increase in hybridization in invasive populations. 
    more » « less
  2. null (Ed.)
    Extreme climate events such as droughts, cold snaps, and hurricanes can be powerful agents of natural selection, producing acute selective pressures very different from the everyday pressures acting on organisms. However, it remains unknown whether these infrequent but severe disruptions are quickly erased by quotidian selective forces, or whether they have the potential to durably shape biodiversity patterns across regions and clades. Here, we show that hurricanes have enduring evolutionary impacts on the morphology of anoles, a diverse Neotropical lizard clade. We first demonstrate a transgenerational effect of extreme selection on toepad area for two populations struck by hurricanes in 2017. Given this short-term effect of hurricanes, we then asked whether populations and species that more frequently experienced hurricanes have larger toepads. Using 70 y of historical hurricane data, we demonstrate that, indeed, toepad area positively correlates with hurricane activity for both 12 island populations of Anolis sagrei and 188 Anolis species throughout the Neotropics. Extreme climate events are intensifying due to climate change and may represent overlooked drivers of biogeographic and large-scale biodiversity patterns. 
    more » « less